skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Jurgens, Davi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Topics in conversations depend in part on the type of interpersonal relationship between speakers, such as friendship, kinship, or romance. Identifying these relationships can provide a rich description of how individuals communicate and reveal how relationships influence the way people share information. Using a dataset of more than 9.6M dyads of Twitter users, we show how relationship types influence language use, topic diversity, communication frequencies, and diurnal patterns of conversations. These differences can be used to predict the relationship between two users, with the best predictive model achieving a macro F1 score of 0.70. We also demonstrate how relationship types influence communication dynamics through the task of predicting future retweets. Adding relationships as a feature to a strong baseline model increases the F1 and recall by 1% and 2%. The results of this study suggest relationship types have the potential to provide new insights into how communication and information diffusion occur in social networks. 
    more » « less